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Abstract
A property of dynamical correlation functions for nonequilibrium states is
discussed. We consider arbitrary-dimensional quantum spin systems with local
interaction and translationally invariant states with nonvanishing current over
them. A correlation function between local charge and local Hamiltonian at
different spacetime points is shown to exhibit slow decay.

PACS numbers: 05.60.Gg, 05.70.Ln

1. Introduction

In this paper, we treat nonequilibrium states of quantum spin systems. When we speak of
nonequilibrium states, there are two kinds of states, that is, states near equilibrium and far from
equilibrium. As for the investigation of the former nonequilibrium states, the main purpose
is to understand how the states approach an equilibrium state. The latter are states which, on
the other hand, cannot be treated as perturbed equilibrium states and do not converge to any
equilibrium states, whose properties are less known. We, in this paper, study a property of the
latter nonequilibrium states. There have been works on the nonequilibrium states from various
points of view [1–10]. Among the various results, it is known that nonequilibrium steady
states exhibit slow decay of the equal-time correlation function from approximate theories like
fluctuating hydrodynamics [1]. Recently an approach to the problem from exactly solvable
models [2] has been investigated, and the expected behaviour of the equal-time correlation
function was confirmed.

In this paper, another type of slow decay of the dynamical correlation function will be
discussed. We consider locally interacting quantum spin systems and translationally invariant
states with nonvanishing current over them. We do not impose any other conditions such as
stationarity of the states, and do not ask how the nonequilibrium states are realized. Since
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the states have finite current at infinity, they cannot be locally perturbed equilibrium states
and thus are far from equilibrium. We consider a correlation function between local charge
and local Hamiltonian at different spacetime points. It will be shown in a mathematically
rigorous way that the correlation functions of the states exhibit slow decay with respect to
space and time. The way to show the claim is a generalization of the method employed in
[10]. The paper is organized as follows. In section 2, we introduce our nonequilibrium states
on quantum spin systems. In section 3, the main theorem is proved.

2. States with nonvanishing current on quantum spin systems

Let us consider a d-dimensional (d = 1, 2, 3, . . .) infinite quantum spin system (see, e.g.,
[11]). For simplicity, we assume nearest neighbour translationally invariant interaction. That
is, for each pair of neighbouring sites x and y (i.e., x, y ∈ Zd s.t. |x − y| = 1), a self-adjoint
operator h(x, y) is defined and satisfies τz(h(x, y)) = h(x + z, y + z) for all z ∈ Zd , where τz

stands for the translation operator. Denoting the fundamental vector with direction i as ei , the
local Hamiltonian with respect to a finite region � ⊂ Z is defined as

H� =
d∑

r=1

∑
{x,x+er }⊂�

h(x, x + er ).

In this paper, we employ the Heisenberg picture and the Hamiltonian defines time evolution
of local operators, say A, by

αt (A) := lim
�→Zd

eiH�tA e−iH�t

where the limit is taken with respect to norm topology (we put h̄ = 1). To discuss (electric)
current, a charge n(x), a self-adjoint operator, is assumed to be defined on each site x,1 and
the charge on a finite region � is denoted by N� := ∑

x∈� n(x). It induces a symmetry
transformation on each finite sublattice �, that is, [H�,N�] = 0 holds. The current
operator between sites x and x + er is defined by j (x, x + er ) := i[n(x), h(x, x + er )] =
−i[n(x + er ), h(x, x + er )].

The above seemingly abstract setting has physically interesting examples. For instance,
interacting fermion system is on the list. For each x ∈ Zd , the charge is defined as
n(x) := c∗

xcx where cx is a fermionic annihilation operator at site x and h(x, x + er ) =
−T (c∗

x+er
cx + c∗

xcx+er
) + V n(x)n(x + er ) gives a nearest-neighbour Hamiltonian where T and V

are real constants. The current operator is calculated as j (x, x + er ) = iT (c∗
x+er

cx − c∗
xcx+er

).
The Heisenberg model can be another example. On each site x ∈ Z, spin operators(
S

(1)
x , S

(2)
x , S

(3)
x

)
satisfying the usual commutation relations for angular momentum live.

h(x, x + er ) := S
(1)
x S

(1)
x+er

+ S
(2)
x S

(2)
x+er

+ λS
(3)
x S

(3)
x+er

(λ is a real constant) and n(x) := S
(3)
x leads

the current j (x, x + er ) = −S
(2)
x S

(1)
x+er

+ S
(1)
x S

(2)
x+er

.
In this paper, we consider translationally invariant states with nonvanishing current at time

t = 0. Without loss of generality, we can fix the first axis e1 as a direction of nonvanishing
current. That is, we consider translationally invariant states which satisfy

〈j (0, e1)〉 �= 0.

1 In the absence of a charge operator, the energy current can be defined from the local Hamiltonian. The discussion
in this paper holds also for the case when states have nonvanishing energy current.



Correlation functions for nonequilibrium states 7449

Since our conditions are weak, it surely contains several physically interesting models
[3, 4]. However, we do not impose any other conditions such as stationarity and stability, and
therefore some states might hardly be realized in a real physical situation2. The crucial point
is that the states have nonvanishing current at infinity and they are not, say, locally perturbed
equilibrium states.

3. Slow decay of correlation function

In the derivation of slow decay of correlation functions for continuous symmetry-breaking
equilibrium states (Goldstone theorem), it is crucial to represent an order parameter by a
commutator [12, 13]. Our discussion can be considered as a nonequilibrium analogue of [12].
For nonequilibrium states, the following is an important observation. For finite sublattices V

and � satisfying V ⊃ �,[
−i

∑
x∈V

x1n(x),H�

]
=

∑
{y,y+e1}⊂�

j (y, y + e1) (1)

holds, where x1 is a component of x = (x1, x2, . . . , xd) ∈ Zd . Hereafter, all the
finite sublattices are assumed to be d-dimensional cubes, and we use simplified notation
HR := H[−R,R]d for positive integer R where [−R,R]d := {x = (x1, x2, . . . , xd) ∈ Zd |−R �
xj � R for all j = 1, 2, . . . , d}. Taking the expectation value of (1) with respect to
a translationally invariant state we put � = [−R,R]d , take W > R and divide (1) by
|{y|{y, y + e1} ⊂ [−R,R]d}| = 2R(2R + 1)d−1. Then we obtain

1

2R(2R + 1)d−1

〈[
−i

∑
x∈[−W,W ]d

x1n(x),HR

]〉
= 〈j (0, e1)〉

where we have used the translational invariance of the state. By letting the size of cubic lattices
in the above equation infinity, we obtain

lim
R→∞

lim
W→∞

1

2R(2R + 1)d−1

〈[
−i

∑
x∈[−W,W ]d

x1n(x),HR

]〉
= 〈j (0, e1)〉. (2)

The ordering of the above limiting procedures is crucial and cannot be exchanged. In fact it is
easy to see that if we take R → ∞ first, for steady states it always gives zero. Moreover we
can show the following lemma.

Lemma 1. For an arbitrary translationally invariant state and for any time t ∈ R,

lim
R→∞

lim
W→∞

1

2R(2R + 1)d−1

〈[
−i

∑
x∈[−W.W ]d

x1n(x), αt (HR)

]〉
= 〈j (0, e1)〉

holds, where αt (HR) is a time-evolved object of HR (recall that we are in the Heisenberg
picture). Although the lhs includes time t explicitly, its value does not depend on t.

Proof. Since for t = 0, the above equation holds (see (2)), we estimate its deviation for finite
t. That is, since

2 In real experimental circumstances, nonequilibrium states are often realized by several reservoirs attached to the
boundary of a finite system. The systems considered in this paper do not have boundaries and might be regarded as
the ‘thermodynamic limit’ of such a real system. We do not know conditions which justify this point of view.
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1

2R(2R + 1)d−1


−i

∑
x∈[−W,W ]d

x1n(x), αt (HR)


 = 1

2R(2R + 1)d−1


−i

∑
x∈[−W,W ]d

x1n(x),HR




+
1

2R(2R + 1)d−1

∫ t

0
ds


−i

∑
x∈[−W,W ]d

x1n(x),−iαs([HR,HR+1])




holds, to show

lim
R→∞

lim
W→∞

1

2R(2R + 1)d−1

∥∥∥∥∥∥

−i

∑
x∈[−W,W ]d

x1n(x),−iαs([HR,HR+1])




∥∥∥∥∥∥ = 0 (3)

proves our lemma. Let us consider first the case s = 0 in the above equation.

1

2R(2R + 1)d−1


−i

∑
x∈[−W,W ]d

x1n(x),−i[HR,HR+1]




= 1

2R(2R + 1)d−1


HR,


HR+1,

∑
x∈[−W,W ]d

x1n(x)







+
1

2R(2R + 1)d−1


HR+1,


 ∑

x∈[−W,W ]d

x1n(x),HR





 (4)

which is obtained by the Jacobi identity can be rewritten as, by letting W → ∞,

lim
W→∞

(4) = 1

2R(2R + 1)d−1





HR+1,−i

∑
{x,x+e1}⊂[−R−1,R+1]d\[−R,R]d

j (x, x + e1)




−

HR+1 − HR,−i

∑
{x,x+e1}⊂[−R−1,R+1]d

j (x, x + e1)







whose norm is estimated as O(1/R) and goes to zero as R → ∞. Next we consider the case
of finite s in (3). Thanks to

1

2R(2R + 1)d−1

∥∥∥∥∥∥

−i

∑
x∈[−W,W ]d

x1n(x),−iαs([HR,HR+1])




∥∥∥∥∥∥
= 1

2R(2R + 1)d−1

∥∥∥∥∥∥

−i

∑
x∈[−W,W ]d

x1α−s(n(x)),−i[HR,HR+1]




∥∥∥∥∥∥
� 1

2R(2R + 1)d−1

∥∥∥∥∥∥

−i

∑
x∈[−W,W ]d

x1n(x),−i[HR,HR+1]




∥∥∥∥∥∥
+

1

2R(2R + 1)d−1

∣∣∣∣∣∣
∫ 0

−s

du

∥∥∥∥∥∥

−i

∑
x∈[−W,W ]d

x1
dαu(n(x))

du
,−i[HR,HR+1]




∥∥∥∥∥∥
∣∣∣∣∣∣

to show that the term

1

2R(2R + 1)d−1

∥∥∥∥∥∥

−i

∑
x∈[−W,W ]d

x1
dαu(n(x))

du
,−i[HR,HR+1]




∥∥∥∥∥∥ (5)
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for each u converges to zero as W → ∞ and R → ∞ proves the claim. Since
dαu(n(x))

du
= ∑d

l=1(αu(j (x − el , x)) − αu(j (x, x + el ))) holds, it follows that

∑
x∈[−W,W ]d

x1
dαu(n(x))

du
=

∑
−W�x2,...,xd�W

{
−Wαu(j (−W − 1, x2, . . . , xd,−W, x2, . . . , xd))

−Wαu(j (W, x2, . . . , xd,W + 1, x2, . . . , xd))

+
W−1∑

x1=−W

αu(j (x, x + e1))

}
+

d∑
l=2

∑
−W�x1,x2,...,xl−1,xl+1,...,xd�W

(6)

x1{αu(j (x1, x2, . . . , xl−1,−W − 1, xl+1, . . . , xd, x1, . . . ,−W, . . . , xd))

−αu(j (x1, x2, . . . , xl−1,W, xl+1, . . . , xd, x1, . . . ,W + 1, . . . , xd))}
holds. We employ repeatedly the following group velocity lemma (theorem 6.2.11 of [11]).
There exists a positive constant V such that for strictly local observables A and B the following
inequality holds:

‖[A, αt ◦ τx(B)]‖ � C‖A‖‖B‖ exp(−|x| + V |t |)
where C is a constant depending only on the size of the regions where A and B live. Let us
substitute (6) for (5) and estimate each of its terms. Thanks to ‖−i[HR,HR+1]‖ = O(Rd−1),

1

2R(2R + 1)d−1

∥∥∥∥∥∥

 ∑

−W�x2,...,xd�W

−Wαu(j (−W − 1, x2, . . . , xd,−W, x2, . . . , xd)),−i[HR,HR+1]




∥∥∥∥∥∥
� O

(
1

R

)
O(Wd) exp(−(W − R) + V |u|)

holds and it goes to zero as W → ∞. The commutator related to −Wαu(j (W, x2, . . . , xd,

W + 1, x2, . . . , xd)) also vanishes in the same manner. Next one can see that

1

2R(2R + 1)d−1

∥∥∥∥∥∥

 W−1∑

x1=−W

∑
−W�x2,...,xd�W

αu(j (x, x + e1)),−i[HR,HR+1]



∥∥∥∥∥∥

�
(∑

x∈Zd

e−|x|
)

eV |u|O
(

1

R

)

holds and it goes to zero as R → ∞. Finally,

1

2R(2R + 1)d−1

∥∥∥∥∥∥

 ∑

−W�x1,x2,...,xl−1,xl+1,...,xd�W

x1αu(j (x1, x2, . . . , xl−1,

−W − 1, xl+1, . . . , xd, x1, . . . ,−W, . . . , xd)) − i[HR,HR+1]




∥∥∥∥∥∥
� O

(
1

R

)
O(Wd) e−(W−R)+V |u|
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holds and it goes to zero as W → ∞ and the term related to xl = W vanishes similarly. Thus
we proved the equation,

lim
R→∞

lim
W→∞

1

2R(2R + 1)d−1

〈[
−i

∑
x∈[−W,W ]d

x1n(x),HR(t)

]〉
= 〈j (0, e1)〉.

�

By using an expression HR = ∑d
r=1

∑
−R�yr�R−1

∑
−R�y1,...,yr−1,yr+1,...,yd�R h(y, y + er ),

one obtains for translationally invariant states,

〈j (0, e1)〉 = lim
R→∞

−i

2R(2R + 1)d−1

∑
x∈Zd

d∑
r=1

∑
−R�yr�R−1

∑
−R�y1,...,yr−1,yr+1,...,yd�R

× x1〈[n(x), αt (h(y, y + er ))]〉
from lemma 1. Thanks to the translational invariance of the state, substitution z := y − x
makes the above equation

〈j (0, e1)〉 = lim
R→∞

−i

2R(2R + 1)d−1

∑
z∈Zd

d∑
r=1

∑
−R�yr�R−1

∑
−R�y1,...,yr−1,yr+1,...,yd�R

× (y1 − z1)〈[n(0), αt (h(z, z + er ))]〉.
One can perform the summation for y of the above equation. For r = 1, one obtains

−i

2R(2R + 1)d−1

∑
−R�y1�R−1

∑
−R�y2,...,yd�R

(y1 − z1) = i

(
z1 +

1

2

)

and for r �= 1,

−i

2R(2R + 1)d−1

∑
−R�yr�R−1

∑
−R�y1,...,yr−1,yr+1,...,yd�R

(y1 − z1) = iz1.

Thus we obtain

〈j (0, e1)〉 = i
∑
z∈Zd

{(
z1 +

1

2

)
〈[n(0), αt (h(z, z + e1))]〉 + i

d∑
r=2

z1〈[n(0), αt (h(z, z + er ))]〉
}

.

(7)

Thanks to this representation, we obtain the following theorem.

Theorem 1. For translationally invariant states with nonvanishing current, there exists at least
one r ∈ {1, 2, . . . , d} such that neither 〈[n(0), αt (h(z, z + er ))]〉 nor a dynamical correlation
function

〈n(0)αt (h(z, z + er ))〉T := 〈n(0)αt (h(z, z + er ))〉 − 〈n(0)〉〈αt (h(z, z + er ))〉
are absolutely integrable with respect to z and t.

Proof. First let us note that if 〈[n(0), αt (h(z, z + er ))]〉 is not absolutely integrable,
〈n(0)αt (h(z, z + er ))〉T is not also absolutely integrable. In fact thanks to

〈n(0)αt (h(z, z + er ))〉T − 〈n(0)αt (h(z, z + er ))〉T = 〈[n(0), αt (h(z, z + er ))]〉
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|〈[n(0), αt (h(z, z + er ))]〉| � 2|〈n(0)αt (h(z, z + er ))〉T | is obtained. Now we show that there
exists r such that 〈[n(0), αt (h(z, z + er ))]〉 is not absolutely integrable. From (7), one can see
that

|〈j (0, e1)〉| �
{∑

z∈Zd

∣∣∣∣z1 +
1

2

∣∣∣∣ |〈[n(0), αt (h(z, z + e1))]〉| +
d∑

r=2

|z1||〈[n(0), αt (h(z, z + er ))]〉|
}

�
∑
z∈Zd

(
|z1| +

1

2

) d∑
r=1

|〈[n(0), αt (h(z, z + er ))]〉|

holds. Thanks to the group velocity lemma, there exists a constant C and V such that

|〈[n(0), αt (h(z, z + er ))]〉| � C‖n(0)‖‖h(0, 0 + er )‖ exp(−|z| + V |t |)
holds. Therefore, for an arbitrary ε > 0, there exists N > 0 satisfying∑

|z|>V |t |+N

(
|z1| +

1

2

) d∑
r=1

|〈[n(0), αt (h(z, z + er ))]〉| < ε.

Thus we obtain

|〈j (0, e1)〉| �
∑
z∈Zd

(
|z1| +

1

2

) d∑
r=1

|〈[n(0), αt (h(z, z + er ))]〉|

� ε +

{
V |t | + N +

1

2

} d∑
r=1

∑
|z|�V |t |+N

|〈[n(0), αt (h(z, z + er ))]〉|

� ε +

(
V |t | + N +

1

2

) d∑
r=1

∑
z∈Zd

|〈[n(0), αt (h(z, z + er ))]〉|

which leads to
d∑

r=1

∑
z∈Zd

|〈[n(0), αt (h(z, z + er ))]〉| � |〈j (0, e1)〉| − ε

V |t | + N + 1/2
.

If for all r = 1, 2, . . . , d, |〈[n(0), αt (h(z, z + er ))]〉| are integrable, their summation∑d
r=1 |〈[n(0), αt (h(z, z + er ))]〉| must be integrable. This ends the proof. �

4. Conclusion and outlook

In this paper, we considered states over d-dimensional infinite spin systems which are
translationally invariant and have nonvanishing current expectations. The dynamical
correlation function between n(0) and αt (h(x, x + er )) for some r shows slow decay with
respect to space and time (x, t). The key observation to prove our theorem is to express the
current operator by a commutator and to apply the argument of [12] for the continuous
symmetry-breaking case to our nonequilibrium case, although no continuous symmetry
breaking takes place in our case. The behaviour of the dynamical correlation function is
related with observable effect through response functions, which will be discussed elsewhere.
Since the conditions for our nonequilibrium states are weak, our result is general but is not
very strong. It would be interesting to investigate whether additional physical conditions can
derive a more detailed form of the correlation function.
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